Paper 2, Section II, B
Part II, 2018
Consider a multi-valued function .
(a) Explain what is meant by a branch point and a branch cut.
(b) Consider .
(i) By writing , where , and , deduce the expression for in terms of and . Hence, show that is infinitely valued and state its principal value.
(ii) Show that and are the branch points of . Deduce that the line is a possible choice of branch cut.
(iii) Use the Cauchy-Riemann conditions to show that is analytic in the cut plane. Show that .