Paper 1, Section II, 37E

General Relativity
Part II, 2018

Consider the de Sitter metric

ds2=dt2+e2Ht(dx2+dy2+dz2)d s^{2}=-d t^{2}+e^{2 H t}\left(d x^{2}+d y^{2}+d z^{2}\right)

where H>0H>0 is a constant.

(a) Write down the Lagrangian governing the geodesics of this metric. Use the Euler-Lagrange equations to determine all non-vanishing Christoffel symbols.

(b) Let C\mathcal{C} be a timelike geodesic parametrized by proper time τ\tau with initial conditions at τ=0\tau=0,

t=0,x=y=z=0,x˙=v0>0,y˙=z˙=0,t=0, \quad x=y=z=0, \quad \dot{x}=v_{0}>0, \quad \dot{y}=\dot{z}=0,

where the dot denotes differentiation with respect to τ\tau and v0v_{0} is a constant. Assuming both tt and τ\tau to be future oriented, show that at τ=0\tau=0,

t˙=1+v02\dot{t}=\sqrt{1+v_{0}^{2}}

(c) Find a relation between τ\tau and tt along the geodesic of part (b) and show that tt \rightarrow-\infty for a finite value of τ\tau. [You may use without proof that

11+aebudu=1bln1+aebu+11+aebu1+ constant ,a,b>0.]\left.\int \frac{1}{\sqrt{1+a e^{-b u}}} d u=\frac{1}{b} \ln \frac{\sqrt{1+a e^{-b u}}+1}{\sqrt{1+a e^{-b u}}-1}+\text { constant }, \quad a, b>0 .\right]

(d) Briefly interpret this result.