Paper 2, Section II, E
The Friedmann equations and the conservation of energy-momentum for a spatially homogeneous and isotropic universe are given by:
where is the scale factor, the energy density, the pressure, the cosmological constant and .
(a) Show that for an equation of state constant, the energy density obeys , for some constant .
(b) Consider the case of a matter dominated universe, , with . Write the equation of motion for the scale factor in the form of an effective potential equation,
where you should determine the constant and the potential . Sketch the potential together with the possible values of and qualitatively discuss the long-term dynamics of an initially small and expanding universe for the cases .
(c) Repeat the analysis of part (b), again assuming , for the cases:
(i) ,
(ii) ,
(iii) .
Discuss all qualitatively different possibilities for the dynamics of the universe in each case.