Paper 3, Section II, E

General Relativity
Part II, 2018

The Schwarzschild metric in isotropic coordinates xˉαˉ=(tˉ,xˉ,yˉ,zˉ),αˉ=0,,3\bar{x}^{\bar{\alpha}}=(\bar{t}, \bar{x}, \bar{y}, \bar{z}), \bar{\alpha}=0, \ldots, 3, is given by:

ds2=gˉαˉβˉdxˉαˉdxˉβˉ=(1A)2(1+A)2dtˉ2+(1+A)4(dxˉ2+dyˉ2+dzˉ2)d s^{2}=\bar{g}_{\bar{\alpha} \bar{\beta}} d \bar{x}^{\bar{\alpha}} d \bar{x}^{\bar{\beta}}=-\frac{(1-A)^{2}}{(1+A)^{2}} d \bar{t}^{2}+(1+A)^{4}\left(d \bar{x}^{2}+d \bar{y}^{2}+d \bar{z}^{2}\right)

where

A=m2rˉ,rˉ=xˉ2+yˉ2+zˉ2A=\frac{m}{2 \bar{r}}, \quad \bar{r}=\sqrt{\bar{x}^{2}+\bar{y}^{2}+\bar{z}^{2}}

and mm is the mass of the black hole.

(a) Let xμ=(t,x,y,z),μ=0,,3x^{\mu}=(t, x, y, z), \mu=0, \ldots, 3, denote a coordinate system related to xˉαˉ\bar{x}^{\bar{\alpha}} by

tˉ=γ(tvx),xˉ=γ(xvt),yˉ=y,zˉ=z,\bar{t}=\gamma(t-v x), \quad \bar{x}=\gamma(x-v t), \quad \bar{y}=y, \quad \bar{z}=z,

where γ=1/1v2\gamma=1 / \sqrt{1-v^{2}} and 1<v<1-1<v<1. Write down the transformation matrix xˉαˉ/xμ\partial \bar{x}^{\bar{\alpha}} / \partial x^{\mu}, briefly explain its physical meaning and show that the inverse transformation is of the same form, but with vvv \rightarrow-v.

(b) Using the coordinate transformation matrix of part (a), or otherwise, show that the components gμνg_{\mu \nu} of the metric in coordinates xμx^{\mu} are given by

ds2=gμνdxμdxν=f(A)(dt2+dx2+dy2+dz2)+γ2g(A)(dtvdx)2d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}=f(A)\left(-d t^{2}+d x^{2}+d y^{2}+d z^{2}\right)+\gamma^{2} g(A)(d t-v d x)^{2}

where ff and gg are functions of AA that you should determine. You should also express AA in terms of the coordinates (t,x,y,z)(t, x, y, z).

(c) Consider the limit v1v \rightarrow 1 with p=mγp=m \gamma held constant. Show that for points xtx \neq t the function A0A \rightarrow 0, while γ2A\gamma^{2} A tends to a finite value, which you should determine. Hence determine the metric components gμνg_{\mu \nu} at points xtx \neq t in this limit.