Paper 1, Section II, I

Graph Theory
Part II, 2018

(a) Define ex (n,H)(n, H) where HH is a graph with at least one edge and nHn \geqslant|H|. Show that, for any such HH, the limitnlim(n,H)/(n2)\operatorname{limit}_{n \rightarrow \infty} \lim (n, H) /\left(\begin{array}{c}n \\ 2\end{array}\right) exists.

[You may not assume the Erdős-Stone theorem.]

(b) State the Erdős-Stone theorem. Use it to deduce that if HH is bipartite then limnex(n,H)/(n2)=0.\lim _{n \rightarrow \infty} \operatorname{ex}(n, H) /\left(\begin{array}{l}n \\ 2\end{array}\right)=0 .

(c) Let t2t \geqslant 2. Show that ex (n,Kt,t)=O(n21t)\left(n, K_{t, t}\right)=O\left(n^{2-\frac{1}{t}}\right).

We say AZnA \subset \mathbb{Z}_{n} is nice if whenever a,b,c,dAa, b, c, d \in A with a+b=c+da+b=c+d then either a=c,b=da=c, b=d or a=d,b=ca=d, b=c. Let f(n)=max{A:AZn,Af(n)=\max \left\{|A|: A \subset \mathbb{Z}_{n}, A\right. is nice }\}. Show that f(n)=O(n).f(n)=O(\sqrt{n}) .

[Zn\left[\mathbb{Z}_{n}\right. denotes the set of integers modulo nn, i.e. Zn={0,1,2,,n1}\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\} with addition modulo n.]n .]