Paper 1, Section II, A

Integrable Systems
Part II, 2018

Let M=R2n={(q,p)q,pRn}M=\mathbb{R}^{2 n}=\left\{(\mathbf{q}, \mathbf{p}) \mid \mathbf{q}, \mathbf{p} \in \mathbb{R}^{n}\right\} be equipped with the standard symplectic form so that the Poisson bracket is given by:

{f,g}=fqjgpjfpjgqj\{f, g\}=\frac{\partial f}{\partial q_{j}} \frac{\partial g}{\partial p_{j}}-\frac{\partial f}{\partial p_{j}} \frac{\partial g}{\partial q_{j}}

for f,gf, g real-valued functions on MM. Let H=H(q,p)H=H(\mathbf{q}, \mathbf{p}) be a Hamiltonian function.

(a) Write down Hamilton's equations for (M,H)(M, H), define a first integral of the system and state what it means that the system is integrable.

(b) State the Arnol'd-Liouville theorem.

(c) Define complex coordinates zjz_{j} by zj=qj+ipjz_{j}=q_{j}+i p_{j}, and show that if f,gf, g are realvalued functions on MM then:

{f,g}=2ifzjgzj+2igzjfzˉj\{f, g\}=-2 i \frac{\partial f}{\partial z_{j}} \frac{\partial g}{\partial \overline{z_{j}}}+2 i \frac{\partial g}{\partial z_{j}} \frac{\partial f}{\partial \bar{z}_{j}}

(d) For an n×nn \times n anti-Hermitian matrix AA with components AjkA_{j k}, let IA:=12izjAjkzkI_{A}:=\frac{1}{2 i} \overline{z_{j}} A_{j k} z_{k}. Show that:

{IA,IB}=I[A,B],\left\{I_{A}, I_{B}\right\}=-I_{[A, B]},

where [A,B]=ABBA[A, B]=A B-B A is the usual matrix commutator.

(e) Consider the Hamiltonian:

H=12zjzjH=\frac{1}{2} \overline{z_{j}} z_{j}

Show that (M,H)(M, H) is integrable and describe the invariant tori.

[In this question j,k=1,,nj, k=1, \ldots, n, and the summation convention is understood for these indices.]