Paper 3, Section II,
Part II, 2018
(a) Let be a measure space. Define the spaces for . Prove that if then for all .
(b) Now let endowed with Borel sets and Lebesgue measure. Describe the dual spaces of for . Define reflexivity and say which are reflexive. Prove that is not the dual space of
(c) Now let be a Borel subset and consider the measure space induced from Borel sets and Lebesgue measure on .
(i) Given any , prove that any sequence in converging in to some admits a subsequence converging almost everywhere to .
(ii) Prove that if for then . [Hint: You might want to prove first that the inclusion is continuous with the help of one of the corollaries of Baire's category theorem.]