Suppose ψs:(x,u)↦(x~,u~) is a smooth one-parameter group of transformations acting on R2.
(a) Define the generator of the transformation,
V=ξ(x,u)∂x∂+η(x,u)∂u∂
where you should specify ξ and η in terms of ψs.
(b) Define the nth prolongation of V,Pr(n)V and explicitly compute Pr(1)V in terms of ξ,η.
Recall that if ψs is a Lie point symmetry of the ordinary differential equation:
Δ(x,u,dxdu,…,dxndnu)=0
then it follows that Pr(n)V[Δ]=0 whenever Δ=0.
(c) Consider the ordinary differential equation:
dxdu=F(x,u),
for F a smooth function. Show that if V generates a Lie point symmetry of this equation, then:
0=ηx+(ηu−ξx−Fξu)F−ξFx−ηFu
(d) Find all the Lie point symmetries of the equation:
dxdu=xG(x2u)
where G is an arbitrary smooth function.