Paper 4, Section II, G

Number Fields
Part II, 2018

Let m2m \geqslant 2 be a square-free integer, and let n2n \geqslant 2 be an integer. Let L=Q(mn)L=\mathbb{Q}(\sqrt[n]{m}).

(a) By considering the factorisation of (m)(m) into prime ideals, show that [L:Q]=n[L: \mathbb{Q}]=n.

(b) Let T:L×LQT: L \times L \rightarrow \mathbb{Q} be the bilinear form defined by T(x,y)=trL/Q(xy)T(x, y)=\operatorname{tr}_{L / \mathbb{Q}}(x y). Let βi=mni,i=0,,n1\beta_{i}=\sqrt[n]{m} i, i=0, \ldots, n-1. Calculate the dual basis β0,,βn1\beta_{0}^{*}, \ldots, \beta_{n-1}^{*} of LL with respect to TT, and deduce that OL1nmZ[mn]\mathcal{O}_{L} \subset \frac{1}{n m} \mathbb{Z}[\sqrt[n]{m}].

(c) Show that if pp is a prime and n=m=pn=m=p, then OL=Z[pp]\mathcal{O}_{L}=\mathbb{Z}[\sqrt[p]{p}].