Paper 1, Section II, G
Part II, 2018
(a) Let be an integer such that is prime. Suppose that the ideal class group of is trivial. Show that if is an integer and , then is prime.
(b) Show that the ideal class group of is trivial.
Paper 1, Section II, G
(a) Let be an integer such that is prime. Suppose that the ideal class group of is trivial. Show that if is an integer and , then is prime.
(b) Show that the ideal class group of is trivial.