Paper 1, Section II, H

Analysis of Functions
Part II, 2019

(a) Consider the topology T\mathcal{T} on the natural numbers NR\mathbb{N} \subset \mathbb{R} induced by the standard topology on R\mathbb{R}. Prove it is the discrete topology; i.e. T=P(N)\mathcal{T}=\mathcal{P}(\mathbb{N}) is the power set of N\mathbb{N}.

(b) Describe the corresponding Borel sets on N\mathbb{N} and prove that any function f:NRf: \mathbb{N} \rightarrow \mathbb{R} or f:N[0,+]f: \mathbb{N} \rightarrow[0,+\infty] is measurable.

(c) Using Lebesgue integration theory, define n1f(n)[0,+]\sum_{n \geqslant 1} f(n) \in[0,+\infty] for a function f:N[0,+]f: \mathbb{N} \rightarrow[0,+\infty] and then n1f(n)C\sum_{n \geqslant 1} f(n) \in \mathbb{C} for f:NCf: \mathbb{N} \rightarrow \mathbb{C}. State any condition needed for the sum of the latter series to be defined. What is a simple function in this setting, and which simple functions have finite sum?

(d) State and prove the Beppo Levi theorem (also known as the monotone convergence theorem).

(e) Consider f:R×N[0,+]f: \mathbb{R} \times \mathbb{N} \rightarrow[0,+\infty] such that for any nNn \in \mathbb{N}, the function tf(t,n)t \mapsto f(t, n) is non-decreasing. Prove that

limtn1f(t,n)=n1limtf(t,n).\lim _{t \rightarrow \infty} \sum_{n \geqslant 1} f(t, n)=\sum_{n \geqslant 1} \lim _{t \rightarrow \infty} f(t, n) .

Show that this need not be the case if we drop the hypothesis that tf(t,n)t \mapsto f(t, n) is nondecreasing, even if all the relevant limits exist.