Paper 4, Section II, I

Number Theory
Part II, 2019

(a) Let a0,a1,a_{0}, a_{1}, \ldots be positive integers, and β>0\beta>0 a positive real number. Show that for every n0n \geqslant 0, if θn=[a0,,an,β]\theta_{n}=\left[a_{0}, \ldots, a_{n}, \beta\right], then θn=(βpn+pn1)/(βqn+qn1)\theta_{n}=\left(\beta p_{n}+p_{n-1}\right) /\left(\beta q_{n}+q_{n-1}\right), where (pn)\left(p_{n}\right), (qn)(n1)\left(q_{n}\right)(n \geqslant-1) are sequences of integers satisfying

p0=a0,q0=1,p1=1,q1=0 and (pnpn1qnqn1)=(pn1pn2qn1qn2)(an110)(n1)\begin{aligned} &p_{0}=a_{0}, q_{0}=1, \quad p_{-1}=1, \quad q_{-1}=0 \quad \text { and } \\ &\left(\begin{array}{cc} p_{n} & p_{n-1} \\ q_{n} & q_{n-1} \end{array}\right)=\left(\begin{array}{cc} p_{n-1} & p_{n-2} \\ q_{n-1} & q_{n-2} \end{array}\right)\left(\begin{array}{cc} a_{n} & 1 \\ 1 & 0 \end{array}\right) \quad(n \geqslant 1) \end{aligned}

Show that pnqn1pn1qn=(1)n1p_{n} q_{n-1}-p_{n-1} q_{n}=(-1)^{n-1}, and that θn\theta_{n} lies between pn/qnp_{n} / q_{n} and pn1/qn1p_{n-1} / q_{n-1}.

(b) Show that if [a0,a1,]\left[a_{0}, a_{1}, \ldots\right] is the continued fraction expansion of a positive irrational θ\theta, then pn/qnθp_{n} / q_{n} \rightarrow \theta as nn \rightarrow \infty.

(c) Let the convergents of the continued fraction [a0,a1,,an]\left[a_{0}, a_{1}, \ldots, a_{n}\right] be pj/qj(0p_{j} / q_{j}(0 \leqslant jn)j \leqslant n). Using part (a) or otherwise, show that the nn-th and (n1)(n-1)-th convergents of [an,an1,,a0]\left[a_{n}, a_{n-1}, \ldots, a_{0}\right] are pn/pn1p_{n} / p_{n-1} and qn/qn1q_{n} / q_{n-1} respectively.

(d) Show that if θ=[a0,a1,,an]\theta=\left[\overline{a_{0}, a_{1}, \ldots, a_{n}}\right] is a purely periodic continued fraction with convergents pj/qjp_{j} / q_{j}, then f(θ)=0f(\theta)=0, where f(X)=qnX2+(qn1pn)Xpn1f(X)=q_{n} X^{2}+\left(q_{n-1}-p_{n}\right) X-p_{n-1}. Deduce that if θ\theta^{\prime} is the other root of f(X)f(X), then 1/θ=[an,an1,,a0]-1 / \theta^{\prime}=\left[\overline{a_{n}, a_{n-1}, \ldots, a_{0}}\right].