Paper 3, Section II, I

Number Theory
Part II, 2019

Let p>2p>2 be a prime.

(a) What does it mean to say that an integer gg is a primitive root modp\bmod p ?

(b) Let kk be an integer with 0k<p10 \leqslant k<p-1. Let

Sk=x=0p1xkS_{k}=\sum_{x=0}^{p-1} x^{k}

Show that Sk0(modp)S_{k} \equiv 0(\bmod p). [Recall that by convention 00=10^{0}=1.]

(c) Let f(X,Y,Z)=aX2+bY2+cZ2f(X, Y, Z)=a X^{2}+b Y^{2}+c Z^{2} for some a,b,cZa, b, c \in \mathbb{Z}, and let g=1fp1g=1-f^{p-1}. Show that for any x,y,zZ,g(x,y,z)0x, y, z \in \mathbb{Z}, g(x, y, z) \equiv 0 or 1(modp)1(\bmod p), and that

x,y,z{0,1,,p1}g(x,y,z)0(modp).\sum_{x, y, z \in\{0,1, \ldots, p-1\}} g(x, y, z) \equiv 0 \quad(\bmod p) .

Hence show that there exist integers x,y,zx, y, z, not all divisible by pp, such that f(x,y,z)0f(x, y, z) \equiv 0 (modp)(\bmod p).