The Poisson equation on the unit square, equipped with zero boundary conditions, is discretized with the 9-point scheme:
− 10 3 u i , j + 2 3 ( u i + 1 , j + u i − 1 , j + u i , j + 1 + u i , j − 1 ) + 1 6 ( u i + 1 , j + 1 + u i + 1 , j − 1 + u i − 1 , j + 1 + u i − 1 , j − 1 ) = h 2 f i , j \begin{aligned} &-\frac{10}{3} u_{i, j}+\frac{2}{3}\left(u_{i+1, j}+u_{i-1, j}+u_{i, j+1}+u_{i, j-1}\right) \\ &+\frac{1}{6}\left(u_{i+1, j+1}+u_{i+1, j-1}+u_{i-1, j+1}+u_{i-1, j-1}\right)=h^{2} f_{i, j} \end{aligned} − 3 1 0 u i , j + 3 2 ( u i + 1 , j + u i − 1 , j + u i , j + 1 + u i , j − 1 ) + 6 1 ( u i + 1 , j + 1 + u i + 1 , j − 1 + u i − 1 , j + 1 + u i − 1 , j − 1 ) = h 2 f i , j
where 1 ⩽ i , j ⩽ m , u i , j ≈ u ( i h , j h ) 1 \leqslant i, j \leqslant m, u_{i, j} \approx u(i h, j h) 1 ⩽ i , j ⩽ m , u i , j ≈ u ( i h , j h ) , and ( i h , j h ) (i h, j h) ( i h , j h ) are the grid points with h = 1 m + 1 h=\frac{1}{m+1} h = m + 1 1 . We also assume that u 0 , j = u i , 0 = u m + 1 , j = u i , m + 1 = 0 u_{0, j}=u_{i, 0}=u_{m+1, j}=u_{i, m+1}=0 u 0 , j = u i , 0 = u m + 1 , j = u i , m + 1 = 0 .
(a) Prove that all m × m m \times m m × m tridiagonal symmetric Toeplitz (TST-) matrices
H = [ β , α , β ] : = [ α β β α ⋱ ⋱ ⋱ β β α ] ∈ R m × m H=[\beta, \alpha, \beta]:=\left[\begin{array}{cccc} \alpha & \beta & & \\ \beta & \alpha & \ddots & \\ & \ddots & \ddots & \beta \\ & & \beta & \alpha \end{array}\right] \in \mathbb{R}^{m \times m} H = [ β , α , β ] : = ⎣ ⎢ ⎢ ⎢ ⎡ α β β α ⋱ ⋱ ⋱ β β α ⎦ ⎥ ⎥ ⎥ ⎤ ∈ R m × m
share the same eigenvectors q k \boldsymbol{q}_{k} q k with the components ( sin j k π h ) j = 1 m (\sin j k \pi h)_{j=1}^{m} ( sin j k π h ) j = 1 m for k = 1 , … , m k=1, \ldots, m k = 1 , … , m . Find expressions for the corresponding eigenvalues λ k \lambda_{k} λ k for k = 1 , … , m k=1, \ldots, m k = 1 , … , m . Deduce that H = Q D Q − 1 H=Q D Q^{-1} H = Q D Q − 1 , where D = diag { λ k } D=\operatorname{diag}\left\{\lambda_{k}\right\} D = d i a g { λ k } and Q Q Q is the matrix ( sin i j π h ) i , j = 1 m . (\sin i j \pi h)_{i, j=1}^{m} . ( sin i j π h ) i , j = 1 m .
(b) Show that, by arranging the grid points ( i h , j h ) i h, j h) i h , j h ) into a one-dimensional array by columns, the 9 -points scheme results in the following system of linear equations of the form
A u = b ⇔ [ B C C B ⋱ ⋱ ⋱ C C B ] [ u 1 u 2 ⋮ u m ] = [ b 1 b 2 ⋮ b m ] A \boldsymbol{u}=\boldsymbol{b} \Leftrightarrow\left[\begin{array}{cccc} B & C & & \\ C & B & \ddots & \\ & \ddots & \ddots & C \\ & & C & B \end{array}\right]\left[\begin{array}{c} \boldsymbol{u}_{1} \\ \boldsymbol{u}_{2} \\ \vdots \\ \boldsymbol{u}_{m} \end{array}\right]=\left[\begin{array}{c} \boldsymbol{b}_{1} \\ \boldsymbol{b}_{2} \\ \vdots \\ \boldsymbol{b}_{m} \end{array}\right] A u = b ⇔ ⎣ ⎢ ⎢ ⎢ ⎡ B C C B ⋱ ⋱ ⋱ C C B ⎦ ⎥ ⎥ ⎥ ⎤ ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ u 1 u 2 ⋮ u m ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ = ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ b 1 b 2 ⋮ b m ⎦ ⎥ ⎥ ⎥ ⎥ ⎤
where A ∈ R m 2 × m 2 A \in \mathbb{R}^{m^{2} \times m^{2}} A ∈ R m 2 × m 2 , the vectors u k , b k ∈ R m \boldsymbol{u}_{k}, \boldsymbol{b}_{k} \in \mathbb{R}^{m} u k , b k ∈ R m are portions of u , b ∈ R m 2 \boldsymbol{u}, \boldsymbol{b} \in \mathbb{R}^{m^{2}} u , b ∈ R m 2 , respectively, and B , C B, C B , C are m × m m \times m m × m TST-matrices whose elements you should determine.
(c) Using v k = Q − 1 u k , c k = Q − 1 b k \boldsymbol{v}_{k}=Q^{-1} \boldsymbol{u}_{k}, \boldsymbol{c}_{k}=Q^{-1} \boldsymbol{b}_{k} v k = Q − 1 u k , c k = Q − 1 b k , show that (2) is equivalent to
[ D E E D ⋱ ⋱ ⋱ E E D ] [ v 1 v 2 ⋮ v m ] = [ c 1 c 2 ⋮ c m ] \left[\begin{array}{cccc} D & E & & \\ E & D & \ddots & \\ & \ddots & \ddots & E \\ & & E & D \end{array}\right]\left[\begin{array}{c} \boldsymbol{v}_{1} \\ \boldsymbol{v}_{2} \\ \vdots \\ \boldsymbol{v}_{m} \end{array}\right]=\left[\begin{array}{c} \boldsymbol{c}_{1} \\ \boldsymbol{c}_{2} \\ \vdots \\ \boldsymbol{c}_{m} \end{array}\right] ⎣ ⎢ ⎢ ⎢ ⎡ D E E D ⋱ ⋱ ⋱ E E D ⎦ ⎥ ⎥ ⎥ ⎤ ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ v 1 v 2 ⋮ v m ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ = ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ c 1 c 2 ⋮ c m ⎦ ⎥ ⎥ ⎥ ⎥ ⎤
where D D D and E E E are diagonal matrices.
(d) Show that, by appropriate reordering of the grid, the system (3) is reduced to m m m uncoupled m × m m \times m m × m systems of the form
Λ k v ^ k = c ^ k , k = 1 , … , m \Lambda_{k} \widehat{v}_{k}=\widehat{c}_{k}, \quad k=1, \ldots, m Λ k v k = c k , k = 1 , … , m
Determine the elements of the matrices Λ k \Lambda_{k} Λ k .