Paper 2, Section II, C

Numerical Analysis
Part II, 2019

The Poisson equation on the unit square, equipped with zero boundary conditions, is discretized with the 9-point scheme:

103ui,j+23(ui+1,j+ui1,j+ui,j+1+ui,j1)+16(ui+1,j+1+ui+1,j1+ui1,j+1+ui1,j1)=h2fi,j\begin{aligned} &-\frac{10}{3} u_{i, j}+\frac{2}{3}\left(u_{i+1, j}+u_{i-1, j}+u_{i, j+1}+u_{i, j-1}\right) \\ &+\frac{1}{6}\left(u_{i+1, j+1}+u_{i+1, j-1}+u_{i-1, j+1}+u_{i-1, j-1}\right)=h^{2} f_{i, j} \end{aligned}

where 1i,jm,ui,ju(ih,jh)1 \leqslant i, j \leqslant m, u_{i, j} \approx u(i h, j h), and (ih,jh)(i h, j h) are the grid points with h=1m+1h=\frac{1}{m+1}. We also assume that u0,j=ui,0=um+1,j=ui,m+1=0u_{0, j}=u_{i, 0}=u_{m+1, j}=u_{i, m+1}=0.

(a) Prove that all m×mm \times m tridiagonal symmetric Toeplitz (TST-) matrices

H=[β,α,β]:=[αββαββα]Rm×mH=[\beta, \alpha, \beta]:=\left[\begin{array}{cccc} \alpha & \beta & & \\ \beta & \alpha & \ddots & \\ & \ddots & \ddots & \beta \\ & & \beta & \alpha \end{array}\right] \in \mathbb{R}^{m \times m}

share the same eigenvectors qk\boldsymbol{q}_{k} with the components (sinjkπh)j=1m(\sin j k \pi h)_{j=1}^{m} for k=1,,mk=1, \ldots, m. Find expressions for the corresponding eigenvalues λk\lambda_{k} for k=1,,mk=1, \ldots, m. Deduce that H=QDQ1H=Q D Q^{-1}, where D=diag{λk}D=\operatorname{diag}\left\{\lambda_{k}\right\} and QQ is the matrix (sinijπh)i,j=1m.(\sin i j \pi h)_{i, j=1}^{m} .

(b) Show that, by arranging the grid points ( ih,jh)i h, j h) into a one-dimensional array by columns, the 9 -points scheme results in the following system of linear equations of the form

Au=b[BCCBCCB][u1u2um]=[b1b2bm]A \boldsymbol{u}=\boldsymbol{b} \Leftrightarrow\left[\begin{array}{cccc} B & C & & \\ C & B & \ddots & \\ & \ddots & \ddots & C \\ & & C & B \end{array}\right]\left[\begin{array}{c} \boldsymbol{u}_{1} \\ \boldsymbol{u}_{2} \\ \vdots \\ \boldsymbol{u}_{m} \end{array}\right]=\left[\begin{array}{c} \boldsymbol{b}_{1} \\ \boldsymbol{b}_{2} \\ \vdots \\ \boldsymbol{b}_{m} \end{array}\right]

where ARm2×m2A \in \mathbb{R}^{m^{2} \times m^{2}}, the vectors uk,bkRm\boldsymbol{u}_{k}, \boldsymbol{b}_{k} \in \mathbb{R}^{m} are portions of u,bRm2\boldsymbol{u}, \boldsymbol{b} \in \mathbb{R}^{m^{2}}, respectively, and B,CB, C are m×mm \times m TST-matrices whose elements you should determine.

(c) Using vk=Q1uk,ck=Q1bk\boldsymbol{v}_{k}=Q^{-1} \boldsymbol{u}_{k}, \boldsymbol{c}_{k}=Q^{-1} \boldsymbol{b}_{k}, show that (2) is equivalent to

[DEEDEED][v1v2vm]=[c1c2cm]\left[\begin{array}{cccc} D & E & & \\ E & D & \ddots & \\ & \ddots & \ddots & E \\ & & E & D \end{array}\right]\left[\begin{array}{c} \boldsymbol{v}_{1} \\ \boldsymbol{v}_{2} \\ \vdots \\ \boldsymbol{v}_{m} \end{array}\right]=\left[\begin{array}{c} \boldsymbol{c}_{1} \\ \boldsymbol{c}_{2} \\ \vdots \\ \boldsymbol{c}_{m} \end{array}\right]

where DD and EE are diagonal matrices.

(d) Show that, by appropriate reordering of the grid, the system (3) is reduced to mm uncoupled m×mm \times m systems of the form

Λkv^k=c^k,k=1,,m\Lambda_{k} \widehat{v}_{k}=\widehat{c}_{k}, \quad k=1, \ldots, m

Determine the elements of the matrices Λk\Lambda_{k}.