Paper 4, Section II, B

Principles of Quantum Mechanics
Part II, 2019

Define the spin raising and spin lowering operators S+S_{+}and SS_{-}. Show that

S±s,σ=s(s+1)σ(σ±1)s,σ±1,S_{\pm}|s, \sigma\rangle=\hbar \sqrt{s(s+1)-\sigma(\sigma \pm 1)}|s, \sigma \pm 1\rangle,

where Szs,σ=σs,σS_{z}|s, \sigma\rangle=\hbar \sigma|s, \sigma\rangle and S2s,σ=s(s+1)2s,σS^{2}|s, \sigma\rangle=s(s+1) \hbar^{2}|s, \sigma\rangle.

Two spin- 12\frac{1}{2} particles, with spin operators S(1)\mathbf{S}^{(1)} and S(2)\mathbf{S}^{(2)}, have a Hamiltonian

H=αS(1)S(2)+B(S(1)S(2))H=\alpha \mathbf{S}^{(1)} \cdot \mathbf{S}^{(2)}+\mathbf{B} \cdot\left(\mathbf{S}^{(1)}-\mathbf{S}^{(2)}\right)

where α\alpha and B=(0,0,B)\mathbf{B}=(0,0, B) are constants. Express HH in terms of the two particles' spin raising and spin lowering operators S±(1),S±(2)S_{\pm}^{(1)}, S_{\pm}^{(2)} and the corresponding zz-components Sz(1)S_{z}^{(1)}, Sz(2)S_{z}^{(2)}. Hence find the eigenvalues of HH. Show that there is a unique groundstate in the limit B0B \rightarrow 0 and that the first excited state is triply degenerate in this limit. Explain this degeneracy by considering the action of the combined spin operator S(1)+S(2)\mathbf{S}^{(1)}+\mathbf{S}^{(2)} on the energy eigenstates.