Paper 4, Section II, B
(a) A classical beam of particles scatters off a spherically symmetric potential . Draw a diagram to illustrate the differential cross-section , and use this to derive an expression for in terms of the impact parameter and the scattering angle .
A quantum beam of particles of mass and momentum is incident along the -axis and scatters off a spherically symmetric potential . Write down the asymptotic form of the wavefunction in terms of the scattering amplitude . By considering the probability current , derive an expression for the differential cross-section in terms of .
(b) The solution of the radial Schrödinger equation for a particle of mass and wave number moving in a spherically symmetric potential has the asymptotic form
valid for , where and are constants and denotes the th Legendre polynomial. Define the S-matrix element and the corresponding phase shift for the partial wave of angular momentum , in terms of and . Define also the scattering length for the potential .
Outside some core region, , the Schrödinger equation for some such potential is solved by the s-wave (i.e. ) wavefunction with,
where is a constant. Extract the S-matrix element , the phase shift and the scattering length . Deduce that the potential has a bound state of zero angular momentum and compute its energy. Give the form of the (un-normalised) bound state wavefunction in the region .