Paper 3, Section II, J

Principles of Statistics
Part II, 2019

We consider the exponential model {f(,θ):θ(0,)}\{f(\cdot, \theta): \theta \in(0, \infty)\}, where

f(x,θ)=θeθx for x0f(x, \theta)=\theta e^{-\theta x} \quad \text { for } x \geqslant 0

We observe an i.i.d. sample X1,,XnX_{1}, \ldots, X_{n} from the model.

(a) Compute the maximum likelihood estimator θ^MLE\hat{\theta}_{M L E} for θ\theta. What is the limit in distribution of n(θ^MLEθ)\sqrt{n}\left(\hat{\theta}_{M L E}-\theta\right) ?

(b) Consider the Bayesian setting and place a Gamma(α,β),α,β>0\operatorname{Gamma}(\alpha, \beta), \alpha, \beta>0, prior for θ\theta with density

π(θ)=βαΓ(α)θα1exp(βθ) for θ>0\pi(\theta)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{\alpha-1} \exp (-\beta \theta) \quad \text { for } \theta>0

where Γ\Gamma is the Gamma function satisfying Γ(α+1)=αΓ(α)\Gamma(\alpha+1)=\alpha \Gamma(\alpha) for all α>0\alpha>0. What is the posterior distribution for θ\theta ? What is the Bayes estimator θ^π\hat{\theta}_{\pi} for the squared loss?

(c) Show that the Bayes estimator is consistent. What is the limiting distribution of n(θ^πθ)\sqrt{n}\left(\hat{\theta}_{\pi}-\theta\right) ?

[You may use results from the course, provided you state them clearly.]