Paper 3, Section II, D
Let denote a -dimensional state space with orthonormal basis . For any let be the operator on defined by
for all and .
(a) Define , the quantum Fourier transform (for any chosen .
(b) Let on (for any chosen ) denote the operator defined by
for . Show that the Fourier basis states for are eigenstates of . By expressing in terms of find a basis of eigenstates of and determine the corresponding eigenvalues.
(c) Consider the following oracle promise problem:
Input: an oracle for a function .
Promise: has the form where and are unknown coefficients (and with all arithmetic being .
Problem: Determine with certainty.
Can this problem be solved by a single query to a classical oracle for (and possible further processing independent of ? Give a reason for your answer.
Using the results of part (b) or otherwise, give a quantum algorithm for this problem that makes just one query to the quantum oracle for .
(d) For any , let and (all arithmetic being ). Show how and can each be implemented with one use of together with other unitary gates that are independent of .
(e) Consider now the oracle problem of the form in part (c) except that now is a quadratic function with unknown coefficients (and all arithmetic being mod 3), and the problem is to determine the coefficient with certainty. Using the results of part (d) or otherwise, give a quantum algorithm for this problem that makes just two queries to the quantum oracle for .