Paper 2, Section II, I

Representation Theory
Part II, 2019

(a) For any finite group GG, let ρ1,,ρk\rho_{1}, \ldots, \rho_{k} be a complete set of non-isomorphic complex irreducible representations of GG, with dimensions n1,nkn_{1}, \ldots n_{k}, respectively. Show that

j=1knj2=G\sum_{j=1}^{k} n_{j}^{2}=|G|

(b) Let A,B,C,DA, B, C, D be the matrices

and let G=A,B,C,DG=\langle A, B, C, D\rangle. Write Z=I4Z=-I_{4}.

(i) Prove that the derived subgroup G=ZG^{\prime}=\langle Z\rangle.

(ii) Show that for all gG,g2Zg \in G, g^{2} \in\langle Z\rangle, and deduce that GG is a 2-group of order at most 32 .

(iii) Prove that the given representation of GG of degree 4 is irreducible.

(iv) Prove that GG has order 32 , and find all the irreducible representations of GG.

A=(1000010000100001),B=(0100100000010010)C=(1000010000100001),D=(0010000110000100)\begin{aligned} & A=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\0 & -1 & 0 & 0 \\0 & 0 & 1 & 0 \\0 & 0 & 0 & -1\end{array}\right), \quad B=\left(\begin{array}{llll}0 & 1 & 0 & 0 \\1 & 0 & 0 & 0 \\0 & 0 & 0 & 1 \\0 & 0 & 1 & 0\end{array}\right) \\ & C=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\0 & 1 & 0 & 0 \\0 & 0 & -1 & 0 \\0 & 0 & 0 & -1\end{array}\right), \quad D=\left(\begin{array}{llll}0 & 0 & 1 & 0 \\0 & 0 & 0 & 1 \\1 & 0 & 0 & 0 \\0 & 1 & 0 & 0\end{array}\right) \end{aligned}