Paper 2, Section II, B
Part II, 2019
Give an account of the variational principle for establishing an upper bound on the ground state energy of a Hamiltonian .
A particle of mass moves in one dimension and experiences the potential with an integer. Use a variational argument to prove the virial theorem,
where denotes the expectation value in the true ground state. Deduce that there is no normalisable ground state for .
For the case , use the ansatz to find an estimate for the energy of the ground state.