Paper 1, Section II, B
A particle of mass and charge moving in a uniform magnetic field and electric field is described by the Hamiltonian
where is the canonical momentum.
[ In the following you may use without proof any results concerning the spectrum of the harmonic oscillator as long as they are stated clearly.]
(a) Let . Choose a gauge which preserves translational symmetry in the direction. Determine the spectrum of the system, restricted to states with . The system is further restricted to lie in a rectangle of area , with sides of length and parallel to the - and -axes respectively. Assuming periodic boundary conditions in the -direction, estimate the degeneracy of each Landau level.
(b) Consider the introduction of an additional electric field . Choosing a suitable gauge (with the same choice of vector potential as in part (a)), write down the resulting Hamiltonian. Find the energy spectrum for a particle on again restricted to states with .
Define the group velocity of the electron and show that its -component is given by .
When the system is further restricted to a rectangle of area as above, show that the previous degeneracy of the Landau levels is lifted and determine the resulting energy gap between the ground-state and the first excited state.