Paper 4, Section II, K

Stochastic Financial Models
Part II, 2019

(a) Describe the (Cox-Ross-Rubinstein) binomial model. What are the necessary and sufficient conditions on the model parameters for it to be arbitrage-free? How is the equivalent martingale measure Q\mathbb{Q} characterised in this case?

(b) Consider a discounted claim HH of the form H=h(S01,S11,,ST1)H=h\left(S_{0}^{1}, S_{1}^{1}, \ldots, S_{T}^{1}\right) for some function hh. Show that the value process of HH is of the form

Vt(ω)=vt(S01,S11(ω),,St1(ω))V_{t}(\omega)=v_{t}\left(S_{0}^{1}, S_{1}^{1}(\omega), \ldots, S_{t}^{1}(\omega)\right)

for t{0,,T}t \in\{0, \ldots, T\}, where the function vtv_{t} is given by

vt(x0,,xt)=EQ[h(x0,,xt,xtS11S01,,xtSTt1S01)]v_{t}\left(x_{0}, \ldots, x_{t}\right)=\mathbb{E}_{\mathbb{Q}}\left[h\left(x_{0}, \ldots, x_{t}, x_{t} \cdot \frac{S_{1}^{1}}{S_{0}^{1}}, \ldots, x_{t} \cdot \frac{S_{T-t}^{1}}{S_{0}^{1}}\right)\right]

You may use any property of conditional expectations without proof.

(c) Suppose that H=h(ST1)H=h\left(S_{T}^{1}\right) only depends on the terminal value ST1S_{T}^{1} of the stock price. Derive an explicit formula for the value of HH at time t{0,,T}t \in\{0, \ldots, T\}.

(d) Suppose that HH is of the form H=h(ST1,MT)H=h\left(S_{T}^{1}, M_{T}\right), where Mt:=maxs{0,,t}Ss1M_{t}:=\max _{s \in\{0, \ldots, t\}} S_{s}^{1}. Show that the value process of HH is of the form

Vt(ω)=vt(St1(ω),Mt(ω))V_{t}(\omega)=v_{t}\left(S_{t}^{1}(\omega), M_{t}(\omega)\right)

for t{0,,T}t \in\{0, \ldots, T\}, where the function vtv_{t} is given by

vt(x,m)=EQ[g(x,m,S01,STt1,MTt)]v_{t}(x, m)=\mathbb{E}_{\mathbb{Q}}\left[g\left(x, m, S_{0}^{1}, S_{T-t}^{1}, M_{T-t}\right)\right]

for a function gg to be determined.