Paper 3, Section II, K

Stochastic Financial Models
Part II, 2019

In the Black-Scholes model the price π(C)\pi(C) at time 0 for a European option of the form C=f(ST)C=f\left(S_{T}\right) with maturity T>0T>0 is given by

π(C)=erTf(S0exp(σTy+(r12σ2)T))12πey2/2dy\pi(C)=e^{-r T} \int_{-\infty}^{\infty} f\left(S_{0} \exp \left(\sigma \sqrt{T} y+\left(r-\frac{1}{2} \sigma^{2}\right) T\right)\right) \frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2} d y

(a) Find the price at time 0 of a European call option with maturity T>0T>0 and strike price K>0K>0 in terms of the standard normal distribution function. Derive the put-call parity to find the price of the corresponding European put option.

(b) The digital call option with maturity T>0T>0 and strike price K>0K>0 has payoff given by

CdigCall={1 if STK0 otherwise C_{\mathrm{digCall}}= \begin{cases}1 & \text { if } S_{T} \geqslant K \\ 0 & \text { otherwise }\end{cases}

What is the value of the option at any time t[0,T]t \in[0, T] ? Determine the number of units of the risky asset that are held in the hedging strategy at time tt.

(c) The digital put option with maturity T>0T>0 and strike price K>0K>0 has payoff

CdigPut ={1 if ST<K0 otherwise. C_{\text {digPut }}= \begin{cases}1 & \text { if } S_{T}<K \\ 0 & \text { otherwise. }\end{cases}

Find the put-call parity for digital options and deduce the Black-Scholes price at time 0 for a digital put.