Paper 1, Section II, 30K

Stochastic Financial Models
Part II, 2019

(a) What does it mean to say that (Mn,Fn)n0\left(M_{n}, \mathcal{F}_{n}\right)_{n \geqslant 0} is a martingale? (b) Let (Xn)n0\left(X_{n}\right)_{n \geqslant 0} be a Markov chain defined by X0=0X_{0}=0 and

P[Xn=0Xn1=0]=11n\begin{aligned} & \mathbb{P}\left[X_{n}=0 \mid X_{n-1}=0\right]=1-\frac{1}{n} \end{aligned}

P[Xn=1Xn1=0]=P[Xn=1Xn1=0]=12nP[Xn=0Xn1=0]=11n\begin{aligned} &\mathbb{P}\left[X_{n}=1 \mid X_{n-1}=0\right]=\mathbb{P}\left[X_{n}=-1 \mid X_{n-1}=0\right]=\frac{1}{2 n} \\ &\mathbb{P}\left[X_{n}=0 \mid X_{n-1}=0\right]=1-\frac{1}{n} \end{aligned}

and

P[Xn=nXn1Xn10]=1n,P[Xn=0Xn10]=11n\mathbb{P}\left[X_{n}=n X_{n-1} \mid X_{n-1} \neq 0\right]=\frac{1}{n}, \quad \mathbb{P}\left[X_{n}=0 \mid X_{n-1} \neq 0\right]=1-\frac{1}{n}

for n1n \geqslant 1. Show that (Xn)n0\left(X_{n}\right)_{n \geqslant 0} is a martingale with respect to the filtration (Fn)n0\left(\mathcal{F}_{n}\right)_{n} \geqslant 0 where F0\mathcal{F}_{0} is trivial and Fn=σ(X1,,Xn)\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right) for n1n \geqslant 1.

(c) Let M=(Mn)n0M=\left(M_{n}\right)_{n \geqslant 0} be adapted with respect to a filtration (Fn)n0\left(\mathcal{F}_{n}\right)_{n \geqslant 0} with E[Mn]<\mathbb{E}\left[\left|M_{n}\right|\right]<\infty for all nn. Show that the following are equivalent:

(i) MM is a martingale.

(ii) For every stopping time τ\tau, the stopped process MτM^{\tau} defined by Mnτ:=MnτM_{n}^{\tau}:=M_{n \wedge \tau}, n0n \geqslant 0, is a martingale.

(iii) E[Mnτ]=E[M0]\mathbb{E}\left[M_{n \wedge \tau}\right]=\mathbb{E}\left[M_{0}\right] for all n0n \geqslant 0 and every stopping time τ\tau.

[Hint: To show that (iii) implies (i) you might find it useful to consider the stopping time

T(ω):={n if ωA,n+1 if ωA,T(\omega):= \begin{cases}n & \text { if } \omega \in A, \\ n+1 & \text { if } \omega \notin A,\end{cases}

for any AFn..]\left.A \in \mathcal{F}_{n .} .\right]