Paper 2, Section I, H

Topics in Analysis
Part II, 2019

Let K\mathcal{K} be the collection of non-empty closed bounded subsets of Rn\mathbb{R}^{n}.

(a) Show that, if A,BKA, B \in \mathcal{K} and we write

A+B={a+b:aA,bB}A+B=\{a+b: a \in A, b \in B\}

then A+BKA+B \in \mathcal{K}.

(b) Show that, if KnKK_{n} \in \mathcal{K}, and

K1K2K3K_{1} \supseteq K_{2} \supseteq K_{3} \supseteq \cdots

then K:=n=1KnKK:=\bigcap_{n=1}^{\infty} K_{n} \in \mathcal{K}.

(c) Assuming the result that

ρ(A,B)=supaAinfbBab+supbBinfaAab\rho(A, B)=\sup _{a \in A} \inf _{b \in B}|a-b|+\sup _{b \in B} \inf _{a \in A}|a-b|

defines a metric on K\mathcal{K} (the Hausdorff metric), show that if KnK_{n} and KK are as in part (b), then ρ(Kn,K)0\rho\left(K_{n}, K\right) \rightarrow 0 as nn \rightarrow \infty.