Paper 2, Section II, H
Throughout this question denotes the closed interval .
(a) For , consider the points with and . Show that, if we colour them red or green in such a way that and 1 are coloured differently, there must be two neighbouring points of different colours.
(b) Deduce from part (a) that, if with and closed, and , then .
(c) Deduce from part (b) that there does not exist a continuous function with for all and .
(d) Deduce from part (c) that if is continuous then there exists an with .
(e) Deduce the conclusion of part (c) from the conclusion of part (d).
(f) Deduce the conclusion of part (b) from the conclusion of part (c).
(g) Suppose that we replace wherever it occurs by the unit circle
Which of the conclusions of parts (b), (c) and (d) remain true? Give reasons.