Paper 4, Section II, A

Waves
Part II, 2019

(a) Assuming a slowly-varying two-dimensional wave pattern of the form

φ(x,t)=A(x,t;ε)exp[iεθ(x,t)]\varphi(\mathbf{x}, t)=A(\mathbf{x}, t ; \varepsilon) \exp \left[\frac{i}{\varepsilon} \theta(\mathbf{x}, t)\right]

where 0<ε10<\varepsilon \ll 1, and a local dispersion relation ω=Ω(k;x,t)\omega=\Omega(\mathbf{k} ; \mathbf{x}, t), derive the ray tracing equations,

dxidt=Ωki,dωdt=Ωt,dkidt=Ωxi,1εdθdt=ω+kjΩkj\frac{d x_{i}}{d t}=\frac{\partial \Omega}{\partial k_{i}}, \quad \frac{d \omega}{d t}=\frac{\partial \Omega}{\partial t}, \quad \frac{d k_{i}}{d t}=-\frac{\partial \Omega}{\partial x_{i}}, \quad \frac{1}{\varepsilon} \frac{d \theta}{d t}=-\omega+k_{j} \frac{\partial \Omega}{\partial k_{j}}

for i,j=1,2i, j=1,2, explaining carefully the meaning of the notation used.

(b) For a homogeneous, time-independent (but not necessarily isotropic) medium, show that all rays are straight lines. When the waves have zero frequency, deduce that if the point x\mathbf{x} lies on a ray emanating from the origin in the direction given by a unit vector c^g\widehat{\mathbf{c}}_{\mathrm{g}}, then

θ(x)=θ(0)+c^gkx\theta(\mathbf{x})=\theta(\mathbf{0})+\widehat{\mathbf{c}}_{\mathbf{g}} \cdot \mathbf{k}|\mathbf{x}|

(c) Consider a stationary obstacle in a steadily moving homogeneous medium which has the dispersion relation

Ω=α(k12+k22)1/4Vk1\Omega=\alpha\left(k_{1}^{2}+k_{2}^{2}\right)^{1 / 4}-V k_{1}

where (V,0)(V, 0) is the velocity of the medium and α>0\alpha>0 is a constant. The obstacle generates a steady wave system. Writing (k1,k2)=κ(cosϕ,sinϕ)\left(k_{1}, k_{2}\right)=\kappa(\cos \phi, \sin \phi), with κ>0\kappa>0, show that the wave satisfies

κ=α2V2cos2ϕ,c^g=(cosψ,sinψ)\kappa=\frac{\alpha^{2}}{V^{2} \cos ^{2} \phi}, \quad \widehat{\mathbf{c}}_{\mathrm{g}}=(\cos \psi, \sin \psi)

where ψ\psi is defined by

tanψ=tanϕ1+2tan2ϕ\tan \psi=-\frac{\tan \phi}{1+2 \tan ^{2} \phi}

with 12π<ψ<32π\frac{1}{2} \pi<\psi<\frac{3}{2} \pi and 12π<ϕ<12π-\frac{1}{2} \pi<\phi<\frac{1}{2} \pi. Deduce that the wave pattern occupies a wedge of semi-angle tan1(23/2)\tan ^{-1}\left(2^{-3 / 2}\right), extending in the negative x1x_{1}-direction.