Paper 3, Section II, K
(a) What does it mean to say that a continuous-time Markov chain ) with state space is reversible in equilibrium? State the detailed balance equations, and show that any probability distribution on satisfying them is invariant for the chain.
(b) Customers arrive in a shop in the manner of a Poisson process with rate . There are servers, and capacity for up to people waiting for service. Any customer arriving when the shop is full (in that the total number of customers present is ) is not admitted and never returns. Service times are exponentially distributed with parameter , and they are independent of one another and of the arrivals process. Describe the number of customers in the shop at time as a Markov chain.
Calculate the invariant distribution of , and explain why is the unique invariant distribution. Show that is reversible in equilibrium.
[Any general result from the course may be used without proof, but must be stated clearly.]