Paper 4, Section II, A

Asymptotic Methods
Part II, 2019

Consider, for small ϵ\epsilon, the equation

ϵ2d2ψdx2q(x)ψ=0\epsilon^{2} \frac{d^{2} \psi}{d x^{2}}-q(x) \psi=0

Assume that ()(*) has bounded solutions with two turning points a,ba, b where b>a,q(b)>0b>a, q^{\prime}(b)>0 and q(a)<0q^{\prime}(a)<0.

(a) Use the WKB approximation to derive the relationship

1ϵabq(ξ)1/2dξ=(n+12)π with n=0,1,2,\frac{1}{\epsilon} \int_{a}^{b}|q(\xi)|^{1 / 2} d \xi=\left(n+\frac{1}{2}\right) \pi \text { with } n=0,1,2, \cdots

[You may quote without proof any standard results or formulae from WKB theory.]

(b) In suitable units, the radial Schrödinger equation for a spherically symmetric potential given by V(r)=V0/rV(r)=-V_{0} / r, for constant V0V_{0}, can be recast in the standard form ()(*) as:

22md2ψdx2+e2x[λV(ex)22m(l+12)2e2x]ψ=0\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}+e^{2 x}\left[\lambda-V\left(e^{x}\right)-\frac{\hbar^{2}}{2 m}\left(l+\frac{1}{2}\right)^{2} e^{-2 x}\right] \psi=0

where r=exr=e^{x} and ϵ=/2m\epsilon=\hbar / \sqrt{2 m} is a small parameter.

Use result ()(* *) to show that the energies of the bound states (i.e λ=λ<0)\lambda=-|\lambda|<0) are approximated by the expression:

E=λ=m22V02(n+l+1)2E=-|\lambda|=-\frac{m}{2 \hbar^{2}} \frac{V_{0}^{2}}{(n+l+1)^{2}}

[You may use the result

ab1r(ra)(br)dr=(π/2)[ba]2.]\left.\int_{a}^{b} \frac{1}{r} \sqrt{(r-a)(b-r)} d r=(\pi / 2)[\sqrt{b}-\sqrt{a}]^{2} .\right]