Paper 2, Section II, F

Algebraic Geometry
Part II, 2019

(a) Let AA be a commutative algebra over a field kk, and p:Akp: A \rightarrow k a kk-linear homomorphism. Define Der(A,p)\operatorname{Der}(A, p), the derivations of AA centered in pp, and define the tangent space TpAT_{p} A in terms of this.

Show directly from your definition that if fAf \in A is not a zero divisor and p(f)0p(f) \neq 0, then the natural map TpA[1f]TpAT_{p} A\left[\frac{1}{f}\right] \rightarrow T_{p} A is an isomorphism.

(b) Suppose kk is an algebraically closed field and λik\lambda_{i} \in k for 1ir1 \leqslant i \leqslant r. Let

X={(x,y)A2x0,y0,y2=(xλ1)(xλr)}X=\left\{(x, y) \in \mathbb{A}^{2} \mid x \neq 0, y \neq 0, y^{2}=\left(x-\lambda_{1}\right) \cdots\left(x-\lambda_{r}\right)\right\}

Find a surjective map XA1X \rightarrow \mathbb{A}^{1}. Justify your answer.