Paper 3, Section II, 12H
Part II, 2019
(a) State the theorem and the recursion theorem.
(b) State and prove Rice's theorem.
(c) Show that if is partial recursive, then there is some such that
(d) Show there exists some such that has exactly elements.
(e) Given , is it possible to compute whether or not the number of elements of is a (finite) perfect square? Justify your answer.
[In this question denotes the set of non-negative integers. Any use of Church's thesis in your answers should be explicitly stated.]