Paper 1, Section II, G

Coding and Cryptography
Part II, 2019

What does it mean to say that CC is a binary linear code of length nn, rank kk and minimum distance dd ? Let CC be such a code.

(a) Prove that nd+k1n \geqslant d+k-1.

Let x=(x1,,xn)Cx=\left(x_{1}, \ldots, x_{n}\right) \in C be a codeword with exactly dd non-zero digits.

(b) Prove that puncturing CC on the non-zero digits of xx produces a code CC^{\prime} of length nd,rankk1n-d, \operatorname{rank} k-1 and minimum distance dd^{\prime} for some dd2d^{\prime} \geqslant\left\lceil\frac{d}{2}\right\rceil.

(c) Deduce that nd+1lk1d2tn \geqslant d+\sum_{1 \leqslant l \leqslant k-1}\left\lceil\frac{d}{2^{t}}\right\rceil.