Paper 4, Section I, B

Cosmology
Part II, 2019

Derive the relation between the neutrino temperature TνT_{\nu} and the photon temperature TγT_{\gamma} at a time long after electrons and positrons have become non-relativistic.

[In this question you may work in units of the speed of light, so that c=1c=1. You may also use without derivation the following formulae. The energy density ϵa\epsilon_{a} and pressure PaP_{a} for a single relativistic species a with a number gag_{a} of degenerate states at temperature TT are given by

ϵa=4πgah3p3dpep/(kBT)1,Pa=4πga3h3p3dpep/(kBT)1,\epsilon_{a}=\frac{4 \pi g_{a}}{h^{3}} \int \frac{p^{3} d p}{e^{p /\left(k_{B} T\right)} \mp 1}, \quad \quad P_{a}=\frac{4 \pi g_{a}}{3 h^{3}} \int \frac{p^{3} d p}{e^{p /\left(k_{B} T\right)} \mp 1},

where kBk_{B} is Boltzmann's constant, hh is Planck's constant, and the minus or plus depends on whether the particle is a boson or a fermion respectively. For each species a, the entropy density sas_{a} at temperature TaT_{a} is given by,

sa=ϵa+PakBTa.s_{a}=\frac{\epsilon_{a}+P_{a}}{k_{B} T_{a}} .

The effective total number gg_{*} of relativistic species is defined in terms of the numbers of bosonic and fermionic particles in the theory as,

g=bosons gbosons +78fermions gfermions g_{*}=\sum_{\text {bosons }} g_{\text {bosons }}+\frac{7}{8} \sum_{\text {fermions }} g_{\text {fermions }}

with the specific values gγ=ge+=ge=2g_{\gamma}=g_{e^{+}}=g_{e^{-}}=2 for photons, positrons and electrons.]