Paper 4, Section II, H
Part II, 2019
(a) Let be a regular curve without self-intersection given by with for and let be the surface of revolution defined globally by the parametrisation
where , i.e. . Compute its mean curvature and its Gaussian curvature .
(b) Define what it means for a regular surface to be minimal. Give an example of a minimal surface which is not locally isometric to a cone, cylinder or plane. Justify your answer.
(c) Let be a regular surface such that . Is it necessarily the case that given any , there exists an open neighbourhood of such that lies on some sphere in ? Justify your answer.