Paper 3, Section II, H

Differential Geometry
Part II, 2019

(a) Let α:(a,b)R2\alpha:(a, b) \rightarrow \mathbb{R}^{2} be a regular curve without self intersection given by α(v)=(f(v),g(v))\alpha(v)=(f(v), g(v)) with f(v)>0f(v)>0 for v(a,b)v \in(a, b).

Consider the local parametrisation given by

ϕ:(0,2π)×(a,b)R3\phi:(0,2 \pi) \times(a, b) \rightarrow \mathbb{R}^{3}

where ϕ(u,v)=(f(v)cosu,f(v)sinu,g(v))\phi(u, v)=(f(v) \cos u, f(v) \sin u, g(v)).

(i) Show that the image ϕ((0,2π)×(a,b))\phi((0,2 \pi) \times(a, b)) defines a regular surface SS in R3\mathbb{R}^{3}.

(ii) If γ(s)=ϕ(u(s),v(s))\gamma(s)=\phi(u(s), v(s)) is a geodesic in SS parametrised by arc length, then show that f(v(s))2u(s)f(v(s))^{2} u^{\prime}(s) is constant in ss. If θ(s)\theta(s) denotes the angle that the geodesic makes with the parallel S{z=g(v(s))}S \cap\{z=g(v(s))\}, then show that f(v(s))cosθ(s)f(v(s)) \cos \theta(s) is constant in ss.

(b) Now assume that α(v)=(f(v),g(v))\alpha(v)=(f(v), g(v)) extends to a smooth curve α:[a,b]R2\alpha:[a, b] \rightarrow \mathbb{R}^{2} such that f(a)=0,f(b)=0,f(a)0,f(b)0f(a)=0, f(b)=0, f^{\prime}(a) \neq 0, f^{\prime}(b) \neq 0. Let Sˉ\bar{S} be the closure of SS in R3\mathbb{R}^{3}.

(i) State a necessary and sufficient condition on α(v)\alpha(v) for Sˉ\bar{S} to be a compact regular surface. Justify your answer.

(ii) If Sˉ\bar{S} is a compact regular surface, and γ:(,)Sˉ\gamma:(-\infty, \infty) \rightarrow \bar{S} is a geodesic, show that there exists a non-empty open subset USˉU \subset \bar{S} such that γ((,))U=\gamma((-\infty, \infty)) \cap U=\emptyset.