Paper 4, Section II, F
Part II, 2019
State the Lefschetz fixed point theorem.
Let be an integer, and a choice of base point. Define a space
where is discrete and is the smallest equivalence relation such that for all . Let be a homeomorphism without fixed points. Use the Lefschetz fixed point theorem to prove the following facts.
(i) If then is divisible by 3 .
(ii) If then is even.