Paper 4, Section II, F

Algebraic Topology
Part II, 2019

State the Lefschetz fixed point theorem.

Let n2n \geqslant 2 be an integer, and x0S2x_{0} \in S^{2} a choice of base point. Define a space

X:=(S2×Z/nZ)/X:=\left(S^{2} \times \mathbb{Z} / n \mathbb{Z}\right) / \sim

where Z/nZ\mathbb{Z} / n \mathbb{Z} is discrete and \sim is the smallest equivalence relation such that (x0,i)\left(x_{0}, i\right) \sim (x0,i+1)\left(-x_{0}, i+1\right) for all iZ/nZi \in \mathbb{Z} / n \mathbb{Z}. Let ϕ:XX\phi: X \rightarrow X be a homeomorphism without fixed points. Use the Lefschetz fixed point theorem to prove the following facts.

(i) If ϕ3=IdX\phi^{3}=\mathrm{Id}_{X} then nn is divisible by 3 .

(ii) If ϕ2=IdX\phi^{2}=\operatorname{Id}_{X} then nn is even.