Paper 1, Section II, E

Dynamical Systems
Part II, 2019

For a dynamical system of the form x˙=f(x)\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}), give the definition of the alpha-limit set α(x)\alpha(\mathbf{x}) and the omega-limit set ω(x)\omega(\mathbf{x}) of a point x\mathbf{x}.

Consider the dynamical system

x˙=x21,y˙=kxy,\begin{aligned} &\dot{x}=x^{2}-1, \\ &\dot{y}=k x y, \end{aligned}

where x=(x,y)R2\mathbf{x}=(x, y) \in \mathbb{R}^{2} and kk is a real constant. Answer the following for all values of kk, taking care over boundary cases (both in kk and in x\mathbf{x} ).

(i) What symmetries does this system have?

(ii) Find and classify the fixed points of this system.

(iii) Does this system have any periodic orbits?

(iv) Give α(x)\alpha(\mathbf{x}) and ω(x)\omega(\mathbf{x}) (considering all xR2\mathbf{x} \in \mathbb{R}^{2} ).

(v) For x0=(0,y0)\mathbf{x}_{0}=\left(0, y_{0}\right), give the orbit of x0\mathbf{x}_{0} (considering all y0Ry_{0} \in \mathbb{R} ). You should give your answer in the form y=y(x,y0,k)y=y\left(x, y_{0}, k\right), and specify the range of xx.