Paper 1, Section II, E
A relativistic particle of charge and mass moves in a background electromagnetic field. The four-velocity of the particle at proper time is determined by the equation of motion,
Here , where is the electromagnetic field strength tensor and Lorentz indices are raised and lowered with the metric tensor . In the case of a constant, homogeneous field, write down the solution of this equation giving in terms of its initial value .
[In the following you may use the relation, given below, between the components of the field strength tensor , for , and those of the electric and magnetic fields and ,
for
Suppose that, in some inertial frame with spacetime coordinates and , the electric and magnetic fields are parallel to the -axis with magnitudes and respectively. At time the 3 -velocity of the particle has initial value . Find the subsequent trajectory of the particle in this frame, giving coordinates and as functions of the proper time .
Find the motion in the -direction explicitly, giving as a function of coordinate time . Comment on the form of the solution at early and late times. Show that, when projected onto the plane, the particle undergoes circular motion which is periodic in proper time. Find the radius of the circle and proper time period of the motion in terms of and . The resulting trajectory therefore has the form of a helix with varying pitch where is the distance in the -direction travelled by the particle during the 'th period of its motion in the plane. Show that, for ,
where is a constant which you should determine.