Paper 1, Section II, 18F

Galois Theory
Part II, 2019

(a) Suppose K,LK, L are fields and σ1,,σm\sigma_{1}, \ldots, \sigma_{m} are distinct embeddings of KK into LL. Prove that there do not exist elements λ1,,λm\lambda_{1}, \ldots, \lambda_{m} of LL (not all zero) such that

λ1σ1(x)++λmσm(x)=0 for all xK\lambda_{1} \sigma_{1}(x)+\cdots+\lambda_{m} \sigma_{m}(x)=0 \quad \text { for all } x \in K

(b) For a finite field extension KK of a field kk and for σ1,,σm\sigma_{1}, \ldots, \sigma_{m} distinct kk automorphisms of KK, show that m[K:k]m \leqslant[K: k]. In particular, if GG is a finite group of field automorphisms of a field KK with KGK^{G} the fixed field, deduce that G[K:KG]|G| \leqslant\left[K: K^{G}\right].

(c) If K=Q(x,y)K=\mathbb{Q}(x, y) with x,yx, y independent transcendentals over Q\mathbb{Q}, consider the group GG generated by automorphisms σ\sigma and τ\tau of KK, where

σ(x)=y,σ(y)=x and τ(x)=x,τ(y)=y.\sigma(x)=y, \sigma(y)=-x \quad \text { and } \quad \tau(x)=x, \tau(y)=-y .

Prove that G=8|G|=8 and that KG=Q(x2+y2,x2y2)K^{G}=\mathbb{Q}\left(x^{2}+y^{2}, x^{2} y^{2}\right).