Paper 2, Section II, F
Part II, 2019
For any prime , explain briefly why the Galois group of over is cyclic of order , where if if , and if
Show that the splitting field of over is an extension of degree 20 .
For any prime , prove that does not have an irreducible cubic as a factor. For or , show that is the product of a linear factor and an irreducible quartic over . For , show that either is irreducible over or it splits completely.
[You may assume the reduction mod p criterion for finding cycle types in the Galois group of a monic polynomial over and standard facts about finite fields.]