Paper 4, Section II, D

General Relativity
Part II, 2019

(a) Consider the spherically symmetric spacetime metric

ds2=λ2dt2+μ2dr2+r2dθ2+r2sin2θdϕ2,d s^{2}=-\lambda^{2} d t^{2}+\mu^{2} d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2},

where λ\lambda and μ\mu are functions of tt and rr. Use the Euler-Lagrange equations for the geodesics of the spacetime to compute all non-vanishing Christoffel symbols for this metric.

(b) Consider the static limit of the line element ()(\dagger) where λ\lambda and μ\mu are functions of the radius rr only, and let the matter coupled to gravity be a spherically symmetric fluid with energy momentum tensor

Tμν=(ρ+P)uμuν+Pgμν,uμ=[λ1,0,0,0]T^{\mu \nu}=(\rho+P) u^{\mu} u^{\nu}+P g^{\mu \nu}, \quad u^{\mu}=\left[\lambda^{-1}, 0,0,0\right]

where the pressure PP and energy density ρ\rho are also functions of the radius rr. For these Tolman-Oppenheimer-Volkoff stellar models, the Einstein and matter equations Gμν=8πTμνG_{\mu \nu}=8 \pi T_{\mu \nu} and μTνμ=0\nabla_{\mu} T_{\nu}^{\mu}=0 reduce to

rλλ=μ212r+4πrμ2Prm=4πr2ρ, where m(r)=r2(11μ2)rP=(ρ+P)(μ212r+4πrμ2P)\begin{aligned} \frac{\partial_{r} \lambda}{\lambda} &=\frac{\mu^{2}-1}{2 r}+4 \pi r \mu^{2} P \\ \partial_{r} m &=4 \pi r^{2} \rho, \quad \text { where } \quad m(r)=\frac{r}{2}\left(1-\frac{1}{\mu^{2}}\right) \\ \partial_{r} P &=-(\rho+P)\left(\frac{\mu^{2}-1}{2 r}+4 \pi r \mu^{2} P\right) \end{aligned}

Consider now a constant density solution to the above Einstein and matter equations, where ρ\rho takes the non-zero constant value ρ0\rho_{0} out to a radius RR and ρ=0\rho=0 for r>Rr>R. Show that for such a star,

rP=4πr183πρ0r2(P+13ρ0)(P+ρ0)\partial_{r} P=\frac{4 \pi r}{1-\frac{8}{3} \pi \rho_{0} r^{2}}\left(P+\frac{1}{3} \rho_{0}\right)\left(P+\rho_{0}\right)

and that the pressure at the centre of the star is

P(0)=ρ0112M/R312M/R1, with M=43πρ0R3P(0)=-\rho_{0} \frac{1-\sqrt{1-2 M / R}}{3 \sqrt{1-2 M / R}-1}, \quad \text { with } \quad M=\frac{4}{3} \pi \rho_{0} R^{3}

Show that P(0)P(0) diverges if M=4R/9.M=4 R / 9 . \quad [Hint: at the surface of the star the pressure vanishes: P(R)=0.]P(R)=0 .]