Paper 3, Section II, D

General Relativity
Part II, 2019

(a) Let M\mathcal{M} be a manifold with coordinates xμx^{\mu}. The commutator of two vector fields V\boldsymbol{V} and W\boldsymbol{W} is defined as

[V,W]α=VννWαWννVα[\boldsymbol{V}, \boldsymbol{W}]^{\alpha}=V^{\nu} \partial_{\nu} W^{\alpha}-W^{\nu} \partial_{\nu} V^{\alpha}

(i) Show that [V,W][\boldsymbol{V}, \boldsymbol{W}] transforms like a vector field under a change of coordinates from xμx^{\mu} to x~μ\tilde{x}^{\mu}.

(ii) Show that the commutator of any two basis vectors vanishes, i.e.

[xα,xβ]=0\left[\frac{\partial}{\partial x^{\alpha}}, \frac{\partial}{\partial x^{\beta}}\right]=0

(iii) Show that if V\boldsymbol{V} and W\boldsymbol{W} are linear combinations (not necessarily with constant coefficients) of nn vector fields Z(a),a=1,,n\boldsymbol{Z}_{(a)}, a=1, \ldots, n that all commute with one another, then the commutator [V,W][\boldsymbol{V}, \boldsymbol{W}] is a linear combination of the same nn fields Z(a)Z_{(a)}.

[You may use without proof the following relations which hold for any vector fields V1,V2,V3\boldsymbol{V}_{1}, \boldsymbol{V}_{2}, \boldsymbol{V}_{3} and any function ff :

[V1,V2]=[V2,V1][V1,V2+V3]=[V1,V2]+[V1,V3][V1,fV2]=f[V1,V2]+V1(f)V2\begin{aligned} {\left[\boldsymbol{V}_{1}, \boldsymbol{V}_{2}\right] } &=-\left[\boldsymbol{V}_{2}, \boldsymbol{V}_{1}\right] \\ {\left[\boldsymbol{V}_{1}, \boldsymbol{V}_{2}+\boldsymbol{V}_{3}\right] } &=\left[\boldsymbol{V}_{1}, \boldsymbol{V}_{2}\right]+\left[\boldsymbol{V}_{1}, \boldsymbol{V}_{3}\right] \\ {\left[\boldsymbol{V}_{1}, f \boldsymbol{V}_{2}\right] } &=f\left[\boldsymbol{V}_{1}, \boldsymbol{V}_{2}\right]+\boldsymbol{V}_{1}(f) \boldsymbol{V}_{2} \end{aligned}

but you should clearly indicate each time relation (1),(2)(1),(2), or (3) is used.]

(b) Consider the 2-dimensional manifold R2\mathbb{R}^{2} with Cartesian coordinates (x1,x2)=\left(x^{1}, x^{2}\right)= (x,y)(x, y) carrying the Euclidean metric gαβ=δαβg_{\alpha \beta}=\delta_{\alpha \beta}.

(i) Express the coordinate basis vectors r\partial_{r} and θ\partial_{\theta}, where rr and θ\theta denote the usual polar coordinates, in terms of their Cartesian counterparts.

(ii) Define the unit vectors

r^=rr,θ^=θθ\hat{\boldsymbol{r}}=\frac{\partial_{r}}{\left\|\partial_{r}\right\|}, \quad \hat{\boldsymbol{\theta}}=\frac{\partial_{\theta}}{\left\|\partial_{\theta}\right\|}

and show that (r^,θ^)(\hat{\boldsymbol{r}}, \hat{\boldsymbol{\theta}}) are not a coordinate basis, i.e. there exist no coordinates zαz^{\alpha} such that r^=/z1\hat{\boldsymbol{r}}=\partial / \partial z^{1} and θ^=/z2\hat{\boldsymbol{\theta}}=\partial / \partial z^{2}.