Paper 1, Section II, D

General Relativity
Part II, 2019

Let (M,g)(\mathcal{M}, \boldsymbol{g}) be a spacetime and Γ\boldsymbol{\Gamma} the Levi-Civita connection of the metric g\boldsymbol{g}. The Riemann tensor of this spacetime is given in terms of the connection by

Rραβγ=αΓρβγβΓραγ+ΓρβμΓμαγΓραμΓμβγR_{\rho \alpha \beta}^{\gamma}=\partial_{\alpha} \Gamma_{\rho \beta}^{\gamma}-\partial_{\beta} \Gamma_{\rho \alpha}^{\gamma}+\Gamma_{\rho \beta}^{\mu} \Gamma_{\mu \alpha}^{\gamma}-\Gamma_{\rho \alpha}^{\mu} \Gamma_{\mu \beta}^{\gamma}

The contracted Bianchi identities ensure that the Einstein tensor satisfies

μGμν=0\nabla^{\mu} G_{\mu \nu}=0

(a) Show that the Riemann tensor obeys the symmetry

Rραβμ+Rβραμ+Rαβρμ=0.R_{\rho \alpha \beta}^{\mu}+R_{\beta \rho \alpha}^{\mu}+R_{\alpha \beta \rho}^{\mu}=0 .

(b) Show that a vector field VαV^{\alpha} satisfies the Ricci identity

2[αβ]Vγ=αβVγβαVγ=RραβγVρ2 \nabla_{[\alpha} \nabla_{\beta]} V^{\gamma}=\nabla_{\alpha} \nabla_{\beta} V^{\gamma}-\nabla_{\beta} \nabla_{\alpha} V^{\gamma}=R_{\rho \alpha \beta}^{\gamma} V^{\rho}

Calculate the analogous expression for a rank (20)\left(\begin{array}{l}2 \\ 0\end{array}\right) tensor TμνT^{\mu \nu}, i.e. calculate [αβ]Tμν\nabla_{[\alpha} \nabla_{\beta]} T^{\mu \nu} in terms of the Riemann tensor.

(c) Let KαK^{\alpha} be a vector that satisfies the Killing equation

αKβ+βKα=0\nabla_{\alpha} K_{\beta}+\nabla_{\beta} K_{\alpha}=0

Use the symmetry relation of part (a) to show that

νμKα=RμνβαKβμμKα=RβαKβ\begin{gathered} \nabla_{\nu} \nabla_{\mu} K^{\alpha}=R_{\mu \nu \beta}^{\alpha} K^{\beta} \\ \nabla^{\mu} \nabla_{\mu} K^{\alpha}=-R_{\beta}^{\alpha} K^{\beta} \end{gathered}

where RαβR_{\alpha \beta} is the Ricci tensor.

(d) Show that

KααR=2[μλ][μKλ],K^{\alpha} \nabla_{\alpha} R=2 \nabla^{[\mu} \nabla^{\lambda]} \nabla_{[\mu} K_{\lambda]},

and use the result of part (b) to show that the right hand side evaluates to zero, hence showing that KααR=0K^{\alpha} \nabla_{\alpha} R=0.