Paper 2, Section II, C

Integrable Systems
Part II, 2019

Suppose p=p(x)p=p(x) is a smooth, real-valued, function of xRx \in \mathbb{R} which satisfies p(x)>0p(x)>0 for all xx and p(x)1,px(x),pxx(x)0p(x) \rightarrow 1, p_{x}(x), p_{x x}(x) \rightarrow 0 as x|x| \rightarrow \infty. Consider the Sturm-Liouville operator:

Lψ:=ddx(p2dψdx)L \psi:=-\frac{d}{d x}\left(p^{2} \frac{d \psi}{d x}\right)

which acts on smooth, complex-valued, functions ψ=ψ(x)\psi=\psi(x). You may assume that for any k>0k>0 there exists a unique function φk(x)\varphi_{k}(x) which satisfies:

Lφk=k2φkL \varphi_{k}=k^{2} \varphi_{k}

and has the asymptotic behaviour:

φk(x){eikx as xa(k)eikx+b(k)eikx as x+\varphi_{k}(x) \sim \begin{cases}e^{-i k x} & \text { as } x \rightarrow-\infty \\ a(k) e^{-i k x}+b(k) e^{i k x} & \text { as } x \rightarrow+\infty\end{cases}

(a) By analogy with the standard Schrödinger scattering problem, define the reflection and transmission coefficients: R(k),T(k)R(k), T(k). Show that R(k)2+T(k)2=1|R(k)|^{2}+|T(k)|^{2}=1. [Hint: You may wish to consider W(x)=p(x)2[ψ1(x)ψ2(x)ψ2(x)ψ1(x)]W(x)=p(x)^{2}\left[\psi_{1}(x) \psi_{2}^{\prime}(x)-\psi_{2}(x) \psi_{1}^{\prime}(x)\right] for suitable functions ψ1\psi_{1} and ψ2]\left.\psi_{2} \cdot\right]

(b) Show that, if κ>0\kappa>0, there exists no non-trivial normalizable solution ψ\psi to the equation

Lψ=κ2ψL \psi=-\kappa^{2} \psi

Assume now that p=p(x,t)p=p(x, t), such that p(x,t)>0p(x, t)>0 and p(x,t)1,px(x,t),pxx(x,t)p(x, t) \rightarrow 1, p_{x}(x, t), p_{x x}(x, t) \rightarrow 0 as x|x| \rightarrow \infty. You are given that the operator AA defined by:

Aψ:=4p3d3ψdx318p2pxd2ψdx2(12ppx2+6p2pxx)dψdxA \psi:=-4 p^{3} \frac{d^{3} \psi}{d x^{3}}-18 p^{2} p_{x} \frac{d^{2} \psi}{d x^{2}}-\left(12 p p_{x}^{2}+6 p^{2} p_{x x}\right) \frac{d \psi}{d x}

satisfies:

(LAAL)ψ=ddx(2p4pxxxdψdx)(L A-A L) \psi=-\frac{d}{d x}\left(2 p^{4} p_{x x x} \frac{d \psi}{d x}\right)

(c) Show that L,AL, A form a Lax pair if the Harry Dym equation,

pt=p3pxxxp_{t}=p^{3} p_{x x x}

is satisfied. [You may assume L=L,A=AL=L^{\dagger}, A=-A^{\dagger}.]

(d) Assuming that pp solves the Harry Dym equation, find how the transmission and reflection amplitudes evolve as functions of tt.