Paper 1, Section II, C

Integrable Systems
Part II, 2019

Let M=R2n={(q,p)q,pRn}M=\mathbb{R}^{2 n}=\left\{(\mathbf{q}, \mathbf{p}) \mid \mathbf{q}, \mathbf{p} \in \mathbb{R}^{n}\right\} be equipped with its standard Poisson bracket.

(a) Given a Hamiltonian function H=H(q,p)H=H(\mathbf{q}, \mathbf{p}), write down Hamilton's equations for (M,H)(M, H). Define a first integral of the system and state what it means that the system is integrable.

(b) Show that if n=1n=1 then every Hamiltonian system is integrable whenever

(Hq,Hp)0\left(\frac{\partial H}{\partial q}, \frac{\partial H}{\partial p}\right) \neq \mathbf{0}

Let M~=R2m={(q~,p~)q~,p~Rm}\tilde{M}=\mathbb{R}^{2 m}=\left\{(\tilde{\mathbf{q}}, \tilde{\mathbf{p}}) \mid \tilde{\mathbf{q}}, \tilde{\mathbf{p}} \in \mathbb{R}^{m}\right\} be another phase space, equipped with its standard Poisson bracket. Suppose that H~=H~(q~,p~)\tilde{H}=\tilde{H}(\tilde{\mathbf{q}}, \tilde{\mathbf{p}}) is a Hamiltonian function for M~\tilde{M}. Define Q=(q1,,qn,q~1,,q~m),P=(p1,,pn,p~1,,p~m)\mathbf{Q}=\left(q_{1}, \ldots, q_{n}, \tilde{q}_{1}, \ldots, \tilde{q}_{m}\right), \mathbf{P}=\left(p_{1}, \ldots, p_{n}, \tilde{p}_{1}, \ldots, \tilde{p}_{m}\right) and let the combined phase space M=R2(n+m)={(Q,P)}\mathcal{M}=\mathbb{R}^{2(n+m)}=\{(\mathbf{Q}, \mathbf{P})\} be equipped with the standard Poisson bracket.

(c) Show that if (M,H)(M, H) and (M~,H~)(\tilde{M}, \tilde{H}) are both integrable, then so is (M,H)(\mathcal{M}, \mathcal{H}), where the combined Hamiltonian is given by:

H(Q,P)=H(q,p)+H~(q~,p~)\mathcal{H}(\mathbf{Q}, \mathbf{P})=H(\mathbf{q}, \mathbf{p})+\tilde{H}(\tilde{\mathbf{q}}, \tilde{\mathbf{p}})

(d) Consider the nn-dimensional simple harmonic oscillator with phase space MM and Hamiltonian HH given by:

H=12p12++12pn2+12ω12q12++12ωn2qn2H=\frac{1}{2} p_{1}^{2}+\ldots+\frac{1}{2} p_{n}^{2}+\frac{1}{2} \omega_{1}^{2} q_{1}^{2}+\ldots+\frac{1}{2} \omega_{n}^{2} q_{n}^{2}

where ωi>0\omega_{i}>0. Using the results above, or otherwise, show that (M,H)(M, H) is integrable for (q,p)0(\mathbf{q}, \mathbf{p}) \neq \mathbf{0}.

(e) Is it true that every bounded orbit of an integrable system is necessarily periodic? You should justify your answer.