Paper 2, Section II, H

Linear Analysis
Part II, 2019

(a) State the real version of the Stone-Weierstrass theorem and state the UrysohnTietze extension theorem.

(b) In this part, you may assume that there is a sequence of polynomials PiP_{i} such that supx[0,1]Pi(x)x0\sup _{x \in[0,1]}\left|P_{i}(x)-\sqrt{x}\right| \rightarrow 0 as ii \rightarrow \infty.

Let f:[0,1]Rf:[0,1] \rightarrow \mathbb{R} be a continuous piecewise linear function which is linear on [0,1/2][0,1 / 2] and on [1/2,1][1 / 2,1]. Using the polynomials PiP_{i} mentioned above (but not assuming any form of the Stone-Weierstrass theorem), prove that there are polynomials QiQ_{i} such that supx[0,1]Qi(x)f(x)0\sup _{x \in[0,1]}\left|Q_{i}(x)-f(x)\right| \rightarrow 0 as ii \rightarrow \infty.

(d) Which of the following families of functions are relatively compact in C[0,1]C[0,1] with the supremum norm? Justify your answer.

F1={xsin(πnx)n:nN}F2={xsin(πnx)n1/2:nN}F3={xsin(πnx):nN}\begin{aligned} &\mathcal{F}_{1}=\left\{x \mapsto \frac{\sin (\pi n x)}{n}: n \in \mathbb{N}\right\} \\ &\mathcal{F}_{2}=\left\{x \mapsto \frac{\sin (\pi n x)}{n^{1 / 2}}: n \in \mathbb{N}\right\} \\ &\mathcal{F}_{3}=\{x \mapsto \sin (\pi n x): n \in \mathbb{N}\} \end{aligned}

[In this question N\mathbb{N} denotes the set of positive integers.]