Paper 1, Section II, H

Linear Analysis
Part II, 2019

Let FF be the space of real-valued sequences with only finitely many nonzero terms.

(a) For any p[1,)p \in[1, \infty), show that FF is dense in p\ell^{p}. Is FF dense in ?\ell^{\infty} ? Justify your answer.

(b) Let p[1,)p \in[1, \infty), and let T:FFT: F \rightarrow F be an operator that is bounded in the p\|\cdot\|_{p}-norm, i.e., there exists a CC such that TxpCxp\|T x\|_{p} \leqslant C\|x\|_{p} for all xFx \in F. Show that there is a unique bounded operator T~:pp\widetilde{T}: \ell^{p} \rightarrow \ell^{p} satisfying T~F=T\left.\widetilde{T}\right|_{F}=T, and that T~pC\|\widetilde{T}\|_{p} \leqslant C.

(c) For each p[1,]p \in[1, \infty] and for each i=1,,5i=1, \ldots, 5 determine if there is a bounded operator from p\ell^{p} to p\ell^{p} (in the p\|\cdot\|_{p} norm) whose restriction to FF is given by TiT_{i} :

(T1x)n=nxn,(T2x)n=n(xnxn+1),(T3x)n=xnn,(T4x)n=x1n1/2,(T5x)n=j=1nxj2n\begin{gathered} \left(T_{1} x\right)_{n}=n x_{n}, \quad\left(T_{2} x\right)_{n}=n\left(x_{n}-x_{n+1}\right), \quad\left(T_{3} x\right)_{n}=\frac{x_{n}}{n}, \\ \left(T_{4} x\right)_{n}=\frac{x_{1}}{n^{1 / 2}}, \quad\left(T_{5} x\right)_{n}=\frac{\sum_{j=1}^{n} x_{j}}{2^{n}} \end{gathered}

(d) Let XX be a normed vector space such that the closed unit ball B1(0)\overline{B_{1}(0)} is compact. Prove that XX is finite dimensional.