Paper 4, Section II, 20G

Number Fields
Part II, 2019

(a) Let LL be a number field, and suppose there exists αOL\alpha \in \mathcal{O}_{L} such that OL=Z[α]\mathcal{O}_{L}=\mathbb{Z}[\alpha]. Let f(X)Z[X]f(X) \in \mathbb{Z}[X] denote the minimal polynomial of α\alpha, and let pp be a prime. Let fˉ(X)(Z/pZ)[X]\bar{f}(X) \in(\mathbb{Z} / p \mathbb{Z})[X] denote the reduction modulo pp of f(X)f(X), and let

fˉ(X)=gˉ1(X)e1gˉr(X)er\bar{f}(X)=\bar{g}_{1}(X)^{e_{1}} \cdots \bar{g}_{r}(X)^{e_{r}}

denote the factorisation of fˉ(X)\bar{f}(X) in (Z/pZ)[X](\mathbb{Z} / p \mathbb{Z})[X] as a product of powers of distinct monic irreducible polynomials gˉ1(X),,gˉr(X)\bar{g}_{1}(X), \ldots, \bar{g}_{r}(X), where e1,,ere_{1}, \ldots, e_{r} are all positive integers.

For each i=1,,ri=1, \ldots, r, let gi(X)Z[X]g_{i}(X) \in \mathbb{Z}[X] be any polynomial with reduction modulo pp equal to gˉi(X)\bar{g}_{i}(X), and let Pi=(p,gi(α))OLP_{i}=\left(p, g_{i}(\alpha)\right) \subset \mathcal{O}_{L}. Show that P1,,PrP_{1}, \ldots, P_{r} are distinct, non-zero prime ideals of OL\mathcal{O}_{L}, and that there is a factorisation

pOL=P1e1Prerp \mathcal{O}_{L}=P_{1}^{e_{1}} \cdots P_{r}^{e_{r}}

and that N(Pi)=pdeggˉi(X)N\left(P_{i}\right)=p^{\operatorname{deg} \bar{g}_{i}(X)}.

(b) Let KK be a number field of degree n=[K:Q]n=[K: \mathbb{Q}], and let pp be a prime. Suppose that there is a factorisation

pOK=Q1Qsp \mathcal{O}_{K}=Q_{1} \cdots Q_{s}

where Q1,,QsQ_{1}, \ldots, Q_{s} are distinct, non-zero prime ideals of OK\mathcal{O}_{K} with N(Qi)=pN\left(Q_{i}\right)=p for each i=i= 1,,s1, \ldots, s. Use the result of part (a) to show that if n>pn>p then there is no αOK\alpha \in \mathcal{O}_{K} such that OK=Z[α]\mathcal{O}_{K}=\mathbb{Z}[\alpha].