Paper 1, Section II, 20G

Number Fields
Part II, 2019

Let K=Q(2)K=\mathbb{Q}(\sqrt{2}).

(a) Write down the ring of integers OK\mathcal{O}_{K}.

(b) State Dirichlet's unit theorem, and use it to determine all elements of the group of units OK×\mathcal{O}_{K}^{\times}.

(c) Let POKP \subset \mathcal{O}_{K} denote the ideal generated by 3+23+\sqrt{2}. Show that the group

G={αOK×α1modP}G=\left\{\alpha \in \mathcal{O}_{K}^{\times} \mid \alpha \equiv 1 \bmod P\right\}

is cyclic, and find a generator.