Paper 2, Section II, 20G

Number Fields
Part II, 2020

(a) Let KK be a number field of degree nn. Define the discriminant disc(α1,,αn)\operatorname{disc}\left(\alpha_{1}, \ldots, \alpha_{n}\right) of an nn-tuple of elements αi\alpha_{i} of KK, and show that it is nonzero if and only if α1,,αn\alpha_{1}, \ldots, \alpha_{n} is a Q\mathbb{Q}-basis for KK.

(b) Let K=Q(α)K=\mathbb{Q}(\alpha) where α\alpha has minimal polynomial

Tn+j=0n1ajTj,ajZT^{n}+\sum_{j=0}^{n-1} a_{j} T^{j}, \quad a_{j} \in \mathbb{Z}

and assume that pp is a prime such that, for every j,aj0(modp)j, a_{j} \equiv 0(\bmod p), but a0≢0(modp2)a_{0} \not \equiv 0\left(\bmod p^{2}\right).

(i) Show that P=(p,α)P=(p, \alpha) is a prime ideal, that Pn=(p)P^{n}=(p) and that αP2\alpha \notin P^{2}. [Do not assume that OK=Z[α]\mathcal{O}_{K}=\mathbb{Z}[\alpha].]

(ii) Show that the index of Z[α]\mathbb{Z}[\alpha] in OK\mathcal{O}_{K} is prime to pp.

(iii) If K=Q(α)K=\mathbb{Q}(\alpha) with α3+3α+3=0\alpha^{3}+3 \alpha+3=0, show that OK=Z[α]\mathcal{O}_{K}=\mathbb{Z}[\alpha]. [You may assume without proof that the discriminant of T3+aT+bT^{3}+a T+b is 4a327b2-4 a^{3}-27 b^{2}.]